10 research outputs found

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Deep Brain Stimulation : Applications and Challenges

    Get PDF
    Deep Brain Stimulation (DBS) is widely used for the treatment of movement disorder. It is being explored in the new application areas. Since DBS deals with the internal portion of the brain it offers several challenges. It is difficult to understand the exact mechanism of DBS. This therapy is patient dependent and procedures may change drastically from patient to patient. In this paper DBS is discussed and its potential applications are explored. There are many challenges/restrictions while using this technique. Some major challenges are analyzed for better understanding of DBS

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    QCA-Based PIPO and SIPO Shift Registers Using Cost-Optimized and Energy-Efficient D Flip Flop

    No full text
    With the growing use of quantum-dot cellular automata (QCA) nanotechnology, digital circuits designed at the Nanoscale have a number of advantages over CMOS devices, including the lower utilization of power, increased processing speed of the circuit, and higher density. There are several flip flop designs proposed in the literature with their realization in the QCA technology. However, the majority of these designs suffer from large cell counts, large area utilization, and latency, which leads to the high cost of the circuits. To address this, this work performed a literature survey of the D flip flop (DFF) designs and complex sequential circuits that can be designed from it. A new design of D flip flop was proposed in this work and to assess the performance of the proposed QCA design, an in-depth comparison with existing designs was performed. Further, sequential circuits such as parallel-in-parallel-out (PIPO) and serial-in-parallel-out (SIPO) shift registers were designed using the flip flop design that was put forward. A comprehensive evaluation of the energy dissipation of all presented fundamental flip-flop circuits and other sequential circuits was also performed using the QCAPro tool, and their energy dissipation maps were also obtained. The suggested designs showed lower power dissipation and were cost-efficient, making them suitable for designing higher-power circuits
    corecore